In [30]:
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
In [31]:
df = sns.load_dataset("titanic")
In [32]:
df.head()
Out[32]:
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False
1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False
2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True
3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False
4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True
In [33]:
# sns.scatterplot(x="age", y = "fare", data = df)
sns.scatterplot(x="age" , y="fare" , hue="sex" , data=df)
Out[33]:
<Axes: xlabel='age', ylabel='fare'>
No description has been provided for this image
In [17]:
df2 = sns.load_dataset("tips")
df2.head()
Out[17]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
In [35]:
sns.scatterplot(x= "total_bill", y= "tip", data = df2)
Out[35]:
<Axes: xlabel='total_bill', ylabel='tip'>
No description has been provided for this image
In [19]:
sns.scatterplot(x= "total_bill", y= "tip", hue = "smoker",style = "sex", data = df2)
Out[19]:
<Axes: xlabel='total_bill', ylabel='tip'>
No description has been provided for this image
In [46]:
sns.jointplot(x= "total_bill", y= "tip",hue = "smoker" ,data = df2)
Out[46]:
<seaborn.axisgrid.JointGrid at 0x140d8ff9f50>
No description has been provided for this image
In [40]:
sns.jointplot(x= "total_bill", y= "tip",data = df2, kind ="reg")
Out[40]:
<seaborn.axisgrid.JointGrid at 0x140d8228990>
No description has been provided for this image
In [22]:
df2.corr(numeric_only=True)
Out[22]:
total_bill tip size
total_bill 1.000000 0.675734 0.598315
tip 0.675734 1.000000 0.489299
size 0.598315 0.489299 1.000000
In [44]:
sns.get_dataset_names()
Out[44]:
['anagrams',
 'anscombe',
 'attention',
 'brain_networks',
 'car_crashes',
 'diamonds',
 'dots',
 'dowjones',
 'exercise',
 'flights',
 'fmri',
 'geyser',
 'glue',
 'healthexp',
 'iris',
 'mpg',
 'penguins',
 'planets',
 'seaice',
 'taxis',
 'tips',
 'titanic']
In [52]:
df = sns.load_dataset("dowjones")
df.head()
Out[52]:
Date Price
0 1914-12-01 55.00
1 1915-01-01 56.55
2 1915-02-01 56.00
3 1915-03-01 58.30
4 1915-04-01 66.45
In [25]:
sns.lineplot(x = "Date", y= "Price", data = df)
Out[25]:
<Axes: xlabel='Date', ylabel='Price'>
No description has been provided for this image
In [58]:
sns.lineplot(x = "Date", y= "Price", data = df.head(10))
plt.xticks(rotation = 90)
plt.show()
No description has been provided for this image
In [59]:
df["year"] = df["Date"].dt.year
df["month"] = df["Date"].dt.month
In [63]:
df
Out[63]:
Date Price year month
0 1914-12-01 55.00 1914 12
1 1915-01-01 56.55 1915 1
2 1915-02-01 56.00 1915 2
3 1915-03-01 58.30 1915 3
4 1915-04-01 66.45 1915 4
... ... ... ... ...
644 1968-08-01 883.72 1968 8
645 1968-09-01 922.80 1968 9
646 1968-10-01 955.47 1968 10
647 1968-11-01 964.12 1968 11
648 1968-12-01 965.39 1968 12

649 rows × 4 columns

In [65]:
sns.lineplot(x = "month", y= "Price", data = df[df["year"]==1960])
Out[65]:
<Axes: xlabel='month', ylabel='Price'>
No description has been provided for this image
In [ ]: